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Summary

1. Nested data structures are ubiquitous in the study of ecology and evolution, and such structures need to be

modelled appropriately.Mixed-effects models offer a powerful framework to do so. Nested effects can usually be

fitted using the syntax for crossed effects in mixed models, provided that the coding reflects implicit nesting. But

the experimental design (either nested or crossed) affects the interpretation of the results.

2. The key difference between nested and crossed effects in mixed models is the estimation and interpretation of

the interaction variance. With nested data structures, the interaction variance is pooled with the main effect vari-

ance of the nested factor. Crossed designs are required to separate the two components. This difference between

nested and crossed data is determined by the experimental design (thus by the nature of data sets) and not by the

coding of the statistical model.

3. Data can be nested by design in the sense that it would have been technically feasible and biologically relevant

to collect the data in a crossed design. In such cases, the pooling of the variances needs to be clearly

acknowledged. In other situations, it might be impractical or even irrelevant to apply a crossed design. We call

such situations naturally nested, a case in which the pooling of the interaction variance will be less of an issue.

4. The interpretation of results should reflect the fact that the interaction variance inflates the main effect vari-

ance when dealing with nested data structures. Whether or not this distinction is critical depends on the research

question and the system under study.

5. We present mixed models as a particularly useful tool for analysing nested designs, and we highlight the value

of the estimated random variance as a quantity of biological interest. Important insights can be gained if ran-

dom-effect variances are appropriately interpreted. We hope that our paper facilitates the transition from classi-

cal ANOVAs tomixedmodels in dealing with categorical data.

Key-words: ANOVA, categorical data, experimental design, hierarchical models, interaction vari-

ance, mixed-effects models, variance components analysis

Introduction

Answering ecological and evolutionary problems often

requires complex data with multiple predictors for a response

variable of interest. Multiple categorical variables can be either

nested or crossed depending on the experimental design

employed during data collection (Scheiner & Gurevitch 2001;

Quinn & Keough 2002; Ryan 2007; Hinkelmann & Kemp-

thorne 2008; Kirk 2009). Furthermore, data might be struc-

tured in a variety of ways, which often requires appropriate

control for random effects (Bolker et al. 2009; Zuur, Ieno &

Elphick 2010). We here discuss nested and crossed data struc-

tures with the aim of assisting the biological interpretation of

statistical models. We also highlight the value of mixed-effect

models as a powerful tool formodelling nested data sets.

This paper is primarily concerned with study designs that

encompass two categorical predictors (called factors or facto-

rial predictors in the following), although our points also apply

to study designs with more than two categorical variables. In a

nested design, each level of the nested predictor is uniquely

associated with only one level of the higher-level predictor

(Table 1, Fig. 1). In a crossed (or factorial) design, at least one

level of each predictor is associated with more than one level of

the other predictors (Table 1, Fig. 1). Crossed designs can fur-

ther be separated into partially or fully crossed. In a fully

crossed (or full-factorial) design, there are observations for all

combinations of levels of the two predictors, that is, each level

of one predictor is associated with each level of the other pre-

dictors, while in a partially crossed design, some combinations

of the two predictors have not been sampled (Table 1). This

basic categorization of the study design does not depend on

whether factors are fitted as fixed or random effects, a distinc-

tion that we will discuss in more detail in the second half of the

paper.

Data sets with nested data structures are very common in

evolutionary and ecological studies (Quinn & Keough 2002;*Correspondence author. E-mail: holger.schielzeth@uni-bielefeld.de
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Kéry 2010). Our main aim is to show that the key consequence

of nesting is the pooling of the interaction variance with the

main effect variance of the nested factor. Nested designs are

more constrained than crossed (factorial) designs in that the

former does not allow the separate estimation of interaction

variance (Ryan 2007), while a crossed design does allow such

estimation. Nested designs can be fitted in a classical linear

model with nested fixed effects, but this task is not entirely triv-

ial, because the degrees of freedom need to be adapted to the

experimental design in order to get the correct mean sum of

squares (Underwood 1997; Quinn & Keough 2002; Gelman

2005). Such data can often be more easily analysed in a mixed-

(effects) model that estimates the standard errors appropriately

(Gelman 2005).

Our secondary aim in this paper is therefore a discussion of

mixedmodels as a powerful tool formodelling structured data.

Mixed models are also known as hierarchical or multilevel

models in the social and medical sciences (Congdon 2007;

Gelman &Hill 2007; Goldstein 2011; Snijders & Bosker 2011).

Mixed models feature random effects that allow clustering of

data in groups. The distinguishing characteristic of random

effects is the explicit modelling of the between-group variance

using a hyperparameter(s) (sensu Gelman & Hill 2007; see

below and Table 2). Fixed and random factors can be nested

or crossed with each other, depending on whether some factor

varies only within levels of another factor (i.e. nested) or

whether the levels at which two factors vary are independent of

each other (i.e. crossed). With mixed-effects models, two cate-

gorical predictors can be fitted using the syntax for crossed

effects even if the design is nested. Implicit nesting through

appropriate coding (as discussed in section Nesting and study

design) ensures that the design matrices are built correctly and

that the uncertainty of the fixed effects is estimated appropri-

ately. Again, the key difference between nested and crossed

designs lies in the interpretation of the variance components

that is inflated by the interaction variance for the nested factor

in a nested design.

Nesting and study design

We distinguish two types of nesting. Sometimes factors are

naturally nested. For example, dry biomass of a primary

producer might have been measured at different sites. Bio-

mass was quantified in each of multiple plots within each

study site, and two extraction replicates were taken per plot.

Plots are nested in study sites and extractions constitute

replicates within plots. It would be impossible to break the

nesting of plots within study sites, because it is infeasible to

translocate plots to different sites. It would even be irrelevant

to break the nesting of plots within study sites, because each

plot could not have existed at different sites. The two spatial

scales are biologically nested, and if we aim to understand

the biological system, it is irrelevant to imagine crossing sites

and plots.

In other cases, the effects are nested by study design. For

example, we might be interested in whether supplementary

feeding of adult birds influences the size of the offspring. Sup-

plementary feeding (the treatment) might have been applied to

egg-laying females, and after hatching, multiple chicks might

have been measured within individual broods. Females are

nested within treatments, and chicks are nested within females

(and clustered within broods). It might have been possible to

design the studywith some of the factors crossed. For example,

different treatments could be applied to the same females in dif-

ferent laying cycles, so that female identities are crossed with

treatment. Furthermore, eggs could have been transferred

among clutches so that after hatching, each brood contains

chicks from multiple females that have experienced different

treatments. Cross-fostering would break the nesting of chicks

within broods, which is important if one wants to distinguish

between an effect of the treatment before/during egg laying

(maternal effects) and an effect on post-laying incubation and

parental care (Mousseau & Fox 1998). A crossed design would

have been feasible and is biologically relevant. Therefore, the

data are nested by design and not naturally nested. The differ-

ences between natural nesting and nesting by design will

become important when it comes to the interpretation of the

variance explained by the nested factor.

Table 1. Schematic illustration of crossed and nested designs

Nested design

Factor 2

Factor 1 a b c d

A X X

B X X

Partially crossed design

Factor 2

Factor 1 a b c d

A X X

B X X

C X X

D X X

Fully crossed design

Factor 2

Factor 1 a b c d

A X X X X

B X X X X

C X X X X

D X X X X

Factor combinations for which observations are available are

marked with crosses. Factor 1 has 2–4 levels indicated by upper-case

letters, while Factor 2 has four levels indicated by lower-case letters.

Two factors can be nested (top), partially crossed (middle) or fully

crossed (bottom), depending on whether all levels of the nested

factor (here ‘Factor 2’) are uniquely associated with the higher-level

factor (‘Factor 1’, nested designs) or if all (fully crossed design) or at

least some (partially crossed design) more combinations of factor

levels were sampled.
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There are two ways of coding the levels of a nested fac-

tor (that we label ‘Factor 2’ in the following). One way of

coding is to uniquely label levels within levels of Factor 1

(the factor in which Factor 2 is nested). This might be

done for convenience in the data collection. For example,

it is easy to keep track of the 10 plots within each of mul-

tiple study sites, which would result in plots being labelled

1–10 in each of the study sites, such that different plots at

different study sites take the same label even though they

are geographically distinct. While this is a common habit,

it is prone to misinterpretations and we strongly advise

against it. Instead, levels of the nested factor should be

labelled uniquely within the whole data set. For example,

in the nested design of biomass study described above, we

should label all plots and each extracting replicate

uniquely. After all, each plot is a unique entity. If we have

investigated 10 plots in 10 study sites, their identifiers

should run 1–100 (or otherwise unique) rather than recy-

cling identifiers 1 and 10 for each site. A main advantage

of this way of coding is that it implicitly describes a nested

data structure that a computer programme or a colleague

would recognize the structure as nested without further

explanations. If plots are labelled uniquely, nobody would

ask whether plot 1 and plot 11 are the same, but if plots

were merely labelled uniquely within study sites, it needs

additional information that is not coded in the data set,

clarifying that plot 1 at study site 1 is not the same as plot

1 at study site 2.

Nested and crossed: the key difference

In a two-way factorial design (such as a classical two-way

ANOVA scenario), there are four biological sources of variance

that can potentially be estimated (Fig. 2). For example, a sup-

plementary feeding treatment (two levels) might have been

applied to pairs of a bird species at 10 different study sites (10

levels) with both feeding treatments applied to 10 pairs each at

each of the 10 sites. The response variable of interest is the

number of fledglings produced. This essentially is a 2 9 10

full-factorial design with balanced sampling (N = 200). The

four variance components that can be estimated are as follows:

1 Main effect (marginal) variance explained by Factor 1: This

is the variance in the response explained by the supplementary

feeding treatment averaged across the 10 study sites.

2 Main effect (marginal) variance explained by Factor 2: This

is the variance in the response explained by the 10 study sites

averaged across the two supplementary feeding treatments.

3 Interaction variance explained by factor combinations: This

is the variance in the response explained by the specific combi-

nations of the treatment 9 site after controlling for the aver-

age effect of the supplementary feeding treatment across all

sites and the average effect of the study sites across the two

treatments.

4 Residual variance: This is the variance in the response that is

unexplained by treatment, study site and their interaction and

hence the variance that remains within cells, that is, the vari-

ance among pairs in the number of fledglings after accounting

Fig. 1. Schematic illustrations of four classical study designs. A partially (solid lines only) or fully (solid and dashed lines) crossed design allows the

estimation of main effects for the two factors and of the interaction variance. In a nested design, the nested factor is typically conceptually random,

even though itmight be fitted as a fixed effect (Factor 1 is a group-level predictor relative to Factor 2). In a randomized block design, the blocking fac-

tor is typically conceptually random, even though it might be fitted as a fixed effect (Treatment 2 is a data-level predictor). The block 9 treatment

interaction variance can be estimated if there are replicate observations for each block–treatment combination. A split-plot design combines group-

level and data-level predictors (see Fig. 3). The block 9 treatment 2 and the treatment 1 9 treatment 2 interaction variances, but not the

block 9 treatment 1 interaction variance, can be estimated. Factor levels are labelled by upper-case, lower-case letters or numbers.
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Factor 1

Trait value

Factor level 1A increases
Factor level 1B decreases

Factor 2

Factor level 2A increases
Factor level 2B decreases

Factor 1 x Factor 2 
interaction

Increase for combinations 
of Factor levels 1A and 1B 
is larger than expected 
from the effect of 1A and 
1B alone 

Other sources 
of variation

Unmeasured sources of 
variation, including 
measurement error and 
sampling variance
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of Factor 1

Main effect 
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Interaction
variance 

Residual
variance 

Fig. 2. Biological sources of variance that affect the trait value of interest and how they can be estimated in a crossed experimental design. Nested

sampling cannot change the biological sources of variance (they are part of the biological reality), but the sampling design affects the way in which

sources of variance can be estimated from the data (see text for details). Levels of Factor 1 are labelled by upper-case letters, and levels of Factor 2

are labelled by lower-case letters.

Table 2. Operational definitions of key terms

Term Explanation

Data (unit) level The level of individual observations (data, units of the analysis) and themost basic or lowest level. The unexplained

variability at the data level is expressed as the residual variance

Data-level predictor Explanatory or independent variable that varies at the data level, such that different observations take different values

independent of any grouping level

Factor Categorical predictor (that can be fitted as a fixed or random effect)

Fixed effect Effects that are estimated at each factor level independently of all other factor levels, that is, only observations within each

level contribute to the estimate. Factors can be fitted as fixed effects, but can still be conceptually random in the sense that

they represent a random sample of levels rather than distinct treatments (e.g. block effects)

Group-level predictor Explanatory variable that varies at the grouping level, such that all observations within the same group take the same value

Grouping level Clusters of observations which constitute a hierarchical level above the data level. For example, individuals (data level:

replicate observations per individual) or groups of individuals (data level: single observations per individual)

Groups Used in the statistical sense of any grouping (or clustering) of related observations. For example, individuals, species,

blocks, plots

Hyperparameter An estimator at a higher hierarchical level that controls estimates at the group level. In classical mixedmodels, the group-

level variance is a hyperparameter that estimates the variance of group-level means, which are themselves parameters of

themodel. Both the group-level variance and the group-level means are estimated from the data. (The term

‘hyperparameter’ has a secondmeaning in a Bayesian context that differs from the definition given here.)

Main effect/marginal

effect

The effect of a categorical predictor on the responsewhenmoving from one treatment level to another while holding all

other predictors constant. The constancy of themarginal effect across values of other predictors distinguishesmarginal

effects from interaction effects that vary conditional on values of (one ormore) other predictors

Random effect Effects that are estimated at each factor level, but where the distribution of the estimates is explicitlymodelled by

hyperparameters. The variance of the random effects can be considered the ‘unexplained’ variance at this level in the sense

that the detailed causes of such random-effect variance are unknown. Estimates are influenced by shrinkage towards the

populationmean

Random slopes Most random effects that are fitted inmixedmodels are random intercept effects, that is, mean response value are allowed

to vary among groups. Random slopes represent an interaction between a fixed factor and a random factor. Significant

random-slope variancemeans that themagnitude of the between-group variance varies with values of a covariate or,

equivalently, that the effect of a covariate varies among groups

Shrinkage A property of random-effect estimation inmixedmodels. Groupmeans are not only influenced by observations from a

particular group, but also by the populationmean, such that the random-effect estimates for each group are closer to the

populationmean than themean of the observations from a particular group (i.e. they are ‘shrunken’ towards the

populationmean). The effect is more pronounced for groups with a small number of observations

Treatment An experimentalmanipulation that is of primary interest in a study.We use the term in awider sense, including also factors

that are not under direct control of the experimenter (e.g. breeding status of an individual), therefore covering also quasi-

experimental designs (Ryan 2007). Treatments will typically be fitted as fixed factors
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for the mean number of fledglings in each combination of

factor levels.

In the crossed design that we describe above, it is possible to

estimate all four variance components (Table 3). If we decide

to remove the interaction term from the model, because we

consider it of little biological interest, then the interaction vari-

ance will not be estimated by the model. However, biological

sources of interaction variance cannot disappear because the

total variance in the response values is unaffected by our modi-

fication to the model. As a consequence, the removal of the

interaction termwill lead to an increase in the residual variance

component, because the interaction variance will be pooled

with the residual variance (Table 3). The two sources of varia-

tion are thus conflated.

If we had applied a nested sampling design, such application

design would affect how the variances can be estimated. For

example, we might have applied the treatment to complete

study sites so that 20 pairs in each of five sites received supple-

mentary feeding, while 20 pairs in each of the five other sites

received a control treatment. We might be constrained to such

a treatment, if the species is colonial so that we are not able to

apply the treatment to individual pairs, but only to the colony

as a whole. However, biological sources of variation still

remain unchanged. There would still be an average effect of the

treatment across all sites and variation in the number of fledg-

lings between sites. The interaction variance between site and

treatment will also be present in the biological system if it mat-

ters which treatment is applied to which site, for example

because there is natural variation in food availability between

sites and a supplementary feeding in a rich environment has a

smaller effect than a supplementary feeding in a poor environ-

ment. In this example, we had to choose which treatment we

would apply to which site, and thus, we do not know what

would have happened if we had applied the other treatment.

So where is the interaction variance? Indeed, the interaction

effect and the nested factor main effect variance are completely

confounded. Therefore, the interaction variance will be pooled

(conflated) with the main effect variance of the study site vari-

ance. We cannot decide if the between-site variation that we

estimate is caused by average differences among sites (e.g. pro-

ductivity differences) and/or by differences among sites in the

effect of the treatment. The estimate that we obtain for the

between-site variance is inflated by the interaction variance.

This is a fundamental difference between a nested design

and a crossed design without explicit modelling of the interac-

tion term. In both cases, we will get estimates of three variance

components, but in one situation (crossed design without inter-

action), the interaction variance will increase the residual vari-

ance, while in the other (nested design) the interaction variance

will inflate the main effect variance of the nested factor

(Table 3). The key difference between the two designs there-

fore lies in the estimation of the interaction variance (Table 3).

This point relates to a well-known issue in model fitting,

namely the interpretation of interaction effects (Aiken &West

1991; Engqvist 2005). When data from a crossed design are

analysed in a model with an interaction term, but with one of

the main effects removed, then the interaction term becomes

very difficult to interpret. The estimate for the interaction term

no longer represents the interaction variance only but is con-

flated with the main effect variance of the removed factor

(Table 3). For example, if we have a full-factorial design that

includes age class, treatment and their interaction, but we were

to remove age from the model while keeping the age 9 treat-

ment interaction term, the estimate for the interaction will then

be inflated by the main effect variance of age. The pooling of

the main effect variance and the interaction variance is the rea-

son for the well-appreciated warning against the removal of

main effects in the presence of interactions (Aiken & West

1991).

A word of caution is required for the cases of crossed but

unbalanced designs. In such cases, the separation of the vari-

ance will be less precise, and the more so, the more unbalanced

the design. Balanced sampling increases the power to separate

variance components and is therefore an important aim in data

Table 3. Sources of variance and how they are estimated

Model set-up (fixed and random effects) Study design

Source of

variation

One fixed and

one random Two random Crossed

Crossed

(without interaction) Nested

Main effect

of Factor 1

Variance of

fixed factor

Variance of

randomFactor 1

V1 V1 V1

Main effect of

Factor 2

Variance of random

factor (random-

intercept variance)

Variance of

randomFactor 2

V2 V2 V12 + V2

Interaction Interaction variance

between fixed and random

factor (random-slope

variance)

Interaction variance

between random

Factors 1 and 2

V12 – –

Residual Residual variance Residual variance VR V12 + VR VR

In a two-way factorial design, there are the four sources of variance: the main effect variance of Factor 1 (V1), the main effect variance of Factor 2

(V2), the interaction variance (V12) and the residual variance (VR). Whether or not the four variances can be separated depends on the study design

and how they are estimated depends on the set-up of themodel.
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collection. But unbalanced designs are common in ecology and

evolution, in particular in field studies where it is often difficult

to ensure perfect balance. Therefore, mixedmodels, which pro-

vide appropriate estimators, are particularly valuable for such

unbalanced data sets.

Classical experimental designs

We here discuss a selection of classical experimental designs

that readers might be familiar with. The section aims to show

that classical experimental designs can be conceptualized in a

more general linear modelling framework, rather than being

something distinctly different.

Classical examples of nested and crossed experimental

designs are the breeding designs employed for quantitative

genetic analyses (Comstock & Robinson 1952). The North

Carolina I design is a typical example of a nested design. Sires

are mated to multiple dams that produce multiple offspring.

Observations are clustered in dams, and dams are nested

within sires. To put it another way, full-sib families are nested

within half-sib families. Such data are nested by design,

because an alternative breeding design, the North Carolina II

design, could have been applied. In aNorth Carolina II design,

sires are mated to multiple dams and dams are mated to multi-

ple of these sires. The North Carolina II design can be fully or

partially crossed (Lynch & Walsh 1998). Unlike the nested

North Carolina I design, the crossed North Carolina II design

allows the separate estimation of maternal effect and domi-

nance variance that are conflated with the dam variance in the

North Carolina I design (Falconer & Mackay 1996; Lynch &

Walsh 1998).

Nested and (partially or fully) crossed effects can be consid-

ered the basic units of more complex models. In a randomized

block design, treatments are applied to randomly selected

blocks (Fig. 1). The design is either partially or fully crossed,

depending on whether all or only some of the treatment levels

are applied to each block (randomized complete block designs

or generalized block designs, Quinn & Keough 2002; Kirk

2009; Rasch et al. 2011). A block design is therefore a classical

crossed design with one of the factors being a random factor

and treatment being a data-level predictor (see discussion

below). If there are replications within block–treatment combi-

nations, it is possible to estimate the block 9 treatment inter-

action variance, that is, whether blocks differ in their treatment

effects. Without replications, the interaction variance is pooled

with the residual variance; hence, it cannot be estimated.

Split-plot designs combine crossed and nested factors

(Quinn&Keough 2002; Fig. 1). There are at least three factors

involved, one of them being random and the other two fixed.

One treatment is applied to plots (a group-level predictors, see

discussion below), while the other is applied in a partially or

fully crossedmanner to plots (a data-level predictor, see discus-

sion below). The plot 9 treatment interaction variance is nec-

essarily pooled with the main effect of the group-level

predictors, whereas for the data-level predictors, it is possible

to estimate themarginal effect and the interaction variance sep-

arately, if there is replication of plot 9 data-level predictor

combinations. With only one observation per plot 9 data-

level predictor combination, the plot 9 data-level predictor

interaction variance is pooled with the residual variance.

Another well-known class of experimental designs are

repeated-measures designs that are characterized by measure-

ments of each subject on more than one occasion. For exam-

ple, each subject sequentially experiences at least two

conditions or subjects are monitored longitudinally (i.e. longi-

tudinal studies, Singer & Willett 2003). Repeated-measures

designs are also referred to as ‘crossover’ trials (Diaz-Uriarte

2002), and the treatment (a combination of conditions) and

subject are fully crossed with each other (Table 1). Tradition-

ally, data from such designs are analysed by repeated-measures

ANOVAs, which unfortunately does not allow any missing val-

ues. Mixed models with random slopes (i.e. random-slope

models) can also be applied to repeated-measures designs with

missing data (partially crossed) or without missing data (fully

crossed); usually, subjects aremodelled as a random (intercept)

effect, the treatment as a fixed effect and the temporal/sequen-

tial effect of the treatment as random slopes (see Diaz-Uriarte

2002; Schielzeth&Forstmeier 2009).

Mixed-effectsmodels

Mixed-(effects) models are a statistical framework that features

fixed and random factors. Mixed models explicitly model hier-

archical data structures by clustering observations into groups

(Gelman & Hill 2007; Bolker et al. 2009). Clustering might be

considered a case of nesting, because observations uniquely

belong to particular groups (Zuur et al. 2009), but we prefer

the terms ‘structured data’, ‘grouped data’ or ‘clustered data’

over ‘nested data’ in this case, because this terminology avoids

the confusion with nested factors, and it importantly allows for

crossed random effects (Gelman &Hill 2007). Grouping struc-

tures might arise from repeated measurements on the same

individuals, but also from spatial or temporal structure, family

structures, social groups of organisms, etc. At the lowest hier-

archical level, there are individual observations. We call this

level the data or unit level (Gelman&Hill 2007; Table 2). Indi-

vidual observations are grouped by random factors. Random

factors therefore constitute the grouping level. Because of the

modelling of different levels of grouping, mixed models are

often called hierarchical or multilevel models, particularly in

the social sciences (Goldstein 2011; Snijders&Bosker 2011).

Random factors are predictors where the distribution of

individual coefficients is explicitly modelled by hyperparame-

ters (see Table 2), in the typical case by estimating the

between-group variance (Gelman & Hill 2007). Unlike fixed

factors that are estimated purely based on observations made

for a particular factor level, the estimates of random factors

are influenced by the population mean; in fact, their estimates

are drawn towards the population mean (‘shrinkage’, see

Table 2; McCulloch & Neuhaus 2005; Snijders & Bosker

2011). There exists an extensive discussion about fixed and ran-

dom effects (see below). In practical applications, variables are

modelled as random effects if the primary interest lies in esti-

mating variances, while fixed factors are used for estimating
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the mean effect of a treatment (Merlo et al. 2005c). Random

effects are often used for controlling for correlated structure in

the data, that is, dependencies between data (‘pseudoreplica-

tion’). Nested factors are usually best treated as random effects

as we describe below.

In a model with fixed and random factors, it is important to

consider how the levels of the fixed factor are related to the lev-

els of the random factor. Their relationship can be nested or

crossed (Fig. 3). We will call a fixed factor whose levels vary

among groups (of a random effect) a group-level predictor

(Gelman & Hill 2007; Kirk 2009; sometimes called ‘outer fac-

tor’; see Pinheiro & Bates 2000). For example, a treatment

might have been applied to randomly selected individuals, and

multiple observations were taken per individual. Individuals

(a random effect) are nested within treatments, and observa-

tions are nested within individuals (and treatments). In this

example, ‘treatment’ is a group-level predictor (outer factor to

individual). A fixed factor whose levels vary within groups is

called a data- or unit-level predictor (Gelman & Hill 2007;

sometimes called ‘inner factor’ Pinheiro & Bates 2000). For

instance, multiple sibships (families are treated as a random

effect) might have been split in two treatment groups with one

observation per individual. Individuals are clustered within

families, but the treatment is crossed to the family random

effect. In this instance, ‘treatment’ is a data-level predictor

(inner factor to individual).

In cases of multiple levels (‘higher-order hierarchical mod-

els’), it might be necessary to be more specific about the differ-

ent grouping levels. For example, if there are observations

clustered in subjects that are nested in families, there are two

grouping levels and a statement about a group-level predictor

will be ambiguous. In this example, it would be more precise to

talk about data-level predictors (the level of observations),

subject-level predictors and family-level predictors. If the treat-

ment is applied to whole families, ‘treatment’ will be a group-

level predictor (an outer factor to family). If the treatment is

applied to individual subjects, ‘treatment’ will be a data-level

predictor (an inner factor to family, but an outer factor to

subject).

Fixed and random factors

Our discussion so far has been rather independent of whether

effects are fitted as random or as fixed factors. A full discussion

of random and fixed effects goes beyond the scope of this

paper, but we will nevertheless point to a few relevant points in

the discussion.

Each random effect in a mixed model is modelled as a sepa-

rate group-level model (Gelman & Hill 2007), in the simplest

case by assuming such effects at one level can be modelled as

stemming from a common distribution and properties of this

distribution are estimated by hyperparameters. In the typical

case of normally distributed random effects, the group-level

model consists of a normal distribution with a mean of zero

and a group-level variance, which is estimated from the data.

As with the homoscedasticity of the residuals (cf., Cleasby &

Nakagawa 2011), the assumptions about the group-level dis-

tributions should also be validated. The assumption of a

Gaussian random-effects distribution is likely to be fulfilled if

the source of variation is polygenic with small average effect

sizes. Strong main effects at the grouping level (such as age

classes, sexes, morphs) that are not explicitly modelled will

tend to produce bi- or multimodal distributions of group

means that are not adequately captured by normal distribu-

tions. To put it another way, the levels of the grouping vari-

ance should be drawn from a homogeneous population.

Outliers (as may be produced by a class of ‘others’ that

include a diverse group of features) will tend to impair the fit

of the group-level model and thus the fit of the mixed model

as a whole. Whether or not the distribution of random effects

follows the assumed distribution can be visually checked

using quantile–quantile (Q–Q) plots or histograms, which will

help to identify severe violations. We also recommend using

common sense, such as reasoning if in the biological system

under study it is likely that the sum of small effects will pro-

duce approximately normal distributions (which would be

ensured by the central limit theorem). If random effects are

not normally distributed, it is possible to apply other distribu-

tional assumptions on random effects, but again these

Fig. 3. Group- and data-level predictors in a model with one main effect of interest (‘treatment’, a predictor that is modelled as a fixed effect) and

some clustering in groups (groups are modelled as random effects). With group-level predictors, groups are effectively nested in treatments, whereas

with data-level predictors, groups are crossed with treatments. Only with data-level predictors, it is possible to test for interactions, that is, to what

degree the effect of the treatment varies among groups. If groups are individuals and the treatment is a drug application, for example, the interaction

is caused by differences in the susceptibility of different individuals to the drug. Treatment levels are labelled by upper-case, and groups are labelled

by numbers.
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assumptions should be validated. In some circumstances, it

might also help to fit these ‘random factors’ as fixed factors

instead, which avoids distributional assumptions altogether.

In such cases, however, inferences will be limited only on the

particular sample of groups.

In practical applications, researchers will usually have their

own opinion onwhether a particular effect should be fitted as a

random or a fixed effect (see Bennington & Thayne 1994 for

practical guidelines). The difference certainly matters for

model fitting, as random effects are not estimated indepen-

dently (they are affected by shrinkage), whereas fixed-effect lev-

els of the same predictor are estimated independently of each

other. In the context of this paper, it is important that nested

effects are more easily fitted as random effects, because this

avoids potential pitfalls with choosing the wrong residual vari-

ance (Gelman 2005).

Nested factors are typically conceptually random factors

(Quinn&Keough 2002). Indeed, it is hard to imagine an exper-

imental design with nested fixed effects, where each level is of

particular interest. This is because if we are applying two treat-

ments (eachwithmultiple levels) in a nestedmanner, the nested

treatment is completely confounded with the higher-level treat-

ment effect and it is impossible to estimate meaningful main

effects. Although we stated that nested effects are typically

(conceptually) random effects, they can still be fitted as fixed

effects in a linear model (e.g. Quinn & Keough 2002; Gelman

2005; Kirk 2009). This will be particularly useful if the number

of groups is low, whichmakes it difficult to estimate the group-

level variance usingmixedmodels.

Interpreting random-effect variances

Random-effect variances are often not reported and therefore

also not interpreted in ecological and evolutionary biology

papers. Instead, the interpretation of statistical models is lim-

ited to the fixed effects, even if mixed models are fitted. This

practice is unfortunate, because the estimators for the random-

effect variances allow important biological insight (Merlo et al.

2005a,b,c, 2006). Some fields of research such as quantitative

genetics (Falconer & Mackay 1996; Lynch & Walsh 1998) or

the literature on personality traits and phenotypic plasticity

(Dingemanse et al. 2009; Martin et al. 2011) are indeed

focused on the interpretation of variance components. A criti-

cal quantity is the between-group variance that can be stan-

dardized by the total phenotypic variance to give the

repeatability (a form of an intraclass correlation), such that it

can be compared across studies (Nakagawa & Schielzeth

2010).

If the random-effect variance is low, there is little potential

for strong group-level fixed effects (although they might still

become significant with sufficient data, Merlo et al. 2005c). In

such situations, it might be more fruitful to collect information

on data-level predictors in order to explain residual variance

and thus for makingmore accurate predictions. If the random-

effect variance is large, however, it might be promising to col-

lect information on group-level predictors because there is

great potential that they explain group-level variance. Signifi-

cant (important) group-level predictors will tend to reduce the

random-effect variance, as they explain the part of it and hence

reduce the unexplained group-level variance. Unless the ran-

dom-effect variance is very large, it might still be useful to con-

sider data-level predictors, which can potentially reduce

residual variance (Snijders &Bosker 2011; Fig. 3). A reduction

of the residual variance is useful even if the main interest is in

group-level predictors, as reduced residual variance tends to

reduce the standard errors and therefore improves the esti-

mates for group-level predictors. These considerations are

most important at the design stage of a follow-up study,

although in our experience, variance component analyses

based on an examination of random-effect variances can be a

useful tool in exploratory data analysis. It is important to con-

sider the potential for type I errors when testing a larger num-

ber of data-level predictors (Forstmeier & Schielzeth 2011).

A model of general value should not be optimized for a parti-

cular data set by extensive ‘fishing’.

For example, if we were interested in understanding the sur-

vival probability of some species of insect, we might have sam-

pled multiple individuals frommultiple patches (patch identity

is the random effect). If we found substantial between-patch

variance, it would be promising to consider patch-level predic-

tors, such as temperature, exposition, predators, competitors.

If we found low between-patch variances, we might want to

consider individual-level (i.e. data-level) predictors such as

body size, emergence time, mating status.Many data-level pre-

dictors such as body size might vary both within and between

patches (for genetic or environmental reasons), and it might be

useful to separate the two components (van de Pol & Wright

2009; Algina & Swaminathan 2011) certainly if there are some

indications of significant between-group variance (e.g. Stein-

meyer et al. 2010).

Because random-effect variances (or, equivalently, standard

deviation of the between-group variation) contain relevant bio-

logical information, they should be presented in published

papers even if the main aim was to deal with correlated struc-

tures (‘pseudoreplication’) when estimating fixed effects. The

random-effect variance along with the residual variance can be

presented. A standardized measure of the random-effect vari-

ance is the intraclass correlation coefficient. Confidence inter-

vals of variance components are not always provided by

standard statistical software, even though such uncertainty

estimates would be very valuable for meta-analyses. Confi-

dence intervals for variance components in mixed models can

be estimated, for example, by (parametric) bootstrapping

(Faraway 2006; Nakagawa& Schielzeth 2010).

Nested designs and crossed syntax

Nested effects can usually be fitted using the syntax for crossed

effects if the coding reflects implicit nesting. Statistical software

will convert whatever syntax is used into design matrices, and

these are blind to nested or crossed data collection. The specif-

ics depend on the software (for a worked example in R see

Data S1 in Supporting Information), but we want to highlight

that crossed fitting is routinely done when fitting random
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effects that are nested within fixed factors in a mixed model.

Also, two random factors can be simply fitted as crossed effects

if the coding reflects the implicit nesting of the study design. As

we have described above, the key difference lies in the interpre-

tation of the model estimates and not in the model fitting itself.

We assume that nested factors will typically be fitted as ran-

dom effects. It is also possible to fit nested ANOVAs with two

fixed effects, but this case needs special consideration for the

estimation of the standard errors for the higher-level factor

that need to be based on the appropriate degrees of freedom

(Gelman 2005). We will now discuss the three realistic situa-

tions in more detail (there is no meaningful case where a fixed

effect is nested within a random effect).

In the case of a random-effect and fixed-effect group-level

predictor, crossed fitting is often done without much consider-

ation. Hence, applying a treatment to individuals, taking mul-

tiple measurements per individual and fitting treatment as a

fixed and individual as a random effect technically fit two

crossed effects. The interaction variance is pooled with the ran-

dom-effect variance. If the treatment is applied to a population

of clonal lines, for example, the random-effect variance would

capture genetic effects, but also genotype by environment inter-

actions (G 9 E) (Via & Lande 1985) and is therefore biologi-

cally relevant. The genetic variance is inflated by G 9 E if the

data are nested by design.

The two predictors might also both be treated as random

effects, for example when analysing a nested half-sib–full-sib

breeding design (i.e. North Carolina I). If the factor levels of

the nested random effect are labelled uniquely within the whole

data set (and the coding thus reflects implicit nesting), the two

effects can simply be fitted as two crossed random effects. The

interaction variance is pooled with the nested random effect (in

this case with the ‘dam’ variance component). The interaction

variance would have a meaningful interpretation, because it

includes the dominance interactions between haplotypes.

The two predictors might both be treated as fixed effects. In

this case, it is not possible to fit them in a straightforward way

as two crossed effects, because such a model would be over-

parameterized. For example, wemight want to fit amodel with

block and treatment as two factorial predictors where blocks

are nested in treatments and both are fitted as fixed effects. We

can only fit an intercept, the treatmentmain effect and an inter-

action term (treatment 9 block), but not block main effect

(Gelman 2005). The complication when fitting nested fixed

effects lies in the fact that the degrees of freedom for estimating

the standard error of the higher-level factor (treatment) should

be based on the number of levels of the nested factor (block),

not on the total number of observations (Gelman 2005).

This issue can be avoided by routinely fitting nested factors as

random effects.

Extensions and outlook

We have focused on univariate linear models with Gaussian

error distributions, because these are most widely used in the

fields of ecology and evolution. The mixed model framework,

however, is more powerful and allows the explicit modelling of

non-Gaussian error distributions. Variance decomposition is

somewhat more involved when using generalized linear mixed

models (Nakagawa & Schielzeth 2010). Furthermore, mixed

models can also be used for fitting nonlinear models, which

again demonstrates the generality of the concept. Mixed mod-

els can also be used to fit models to multiple responses, so that

variances as well as covariances can be estimated on multiple

levels (e.g. MCMCglmm package in R, Hadfield 2010). Flexi-

bility also comes with the cost of reduced user-friendliness in

cases where no standard cookbook recipe exists. Bayesian

approaches are particularly flexible, and the softwareWinBugs

(see Kéry 2010) offers possibilities for fitting linear and nonlin-

ear models with great flexibility in the error as well as in the

random-effect distributions. The discussion about the pooling

of the variances in nested designs applies regardless of whether

they are fitted in a (frequentist) likelihood framework or using

a Bayesian approach.

We have focused on blocked random effects in this article.

We call them blocked effects, because the design matrix for the

random effects consists of 0s and 1s and can be sorted so that

the 1s occurs in blocks (Bolker et al. 2009; see Fig. 1). Blocked

random effects constitute a classic case of clustered data,

because each observation is associated with exactly one group-

ing level. Mixed models can also include random effects that

are continuous, for example additive genetic or phylogenetic

relatedness matrices (Kruuk 2004; Hadfield & Nakagawa

2010), spatial distancematrices (Valcu&Kempenaers 2010) or

multiple membership models (Browne, Goldstein & Rasbash

2001) that relate observations to the grouping level in a more

complex fashion.

Several of our examples refer to nesting of observations

within individuals. By fitting individual as a random (or fixed)

effect, we implicitly assume that observations within individu-

als are sufficiently independent of each other. If the data collec-

tion is designed as a longitudinal study of, for example,

growth, then observations closer in time might be more similar

to each other than observations taken at greater time intervals

(Ives & Zhu 2006). Such data will require fitting of more com-

plexmodels that control for the temporal structure (Verbeke &

Molenberghs 2001; Singer & Willett 2003). Importantly, it is

not the nonindependence of the observations that is problem-

atic, but the nonindependence of the residuals. If nonindepen-

dence is adequately controlled for by covariates or (blocked or

continuous) random effects, a model with interdependent data

points might have perfectly uncorrelated residuals. For exam-

ple, we might find a highly bimodal and thus certainly non-

normal distribution of the raw data. If this non-normality is

fully explained by sexual dimorphism or by different age clas-

ses and we include the relevant predictors (sex or age, respec-

tively) in the model, then there is no violation of the

distributional assumptions.

The difference between nested and crossed effects lies lar-

gely in the interpretation. There are three main messages to

be extracted. First, a conceptual approach in terms of vari-

ance components helps to avoid misinterpretations. In the

context of this paper, it is the interaction variance that matters

most. Hence, one important question to ask is: Which of my

© 2012 The Authors. Methods in Ecology and Evolution © 2012 British Ecological Society, Methods in Ecology and Evolution
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model estimates will contain the interaction variance? Second,

already at the design stage of a study, we should decide if and

how we will be able to estimate the interaction variance. A

nested design simply leaves fewer ‘degrees of freedom’ to

model all the effects that are potentially of interest. In particu-

lar, a nested design is not suited for separating main effect

and interaction variance. Third, mixed-effects modelling is a

powerful tool for fitting models to structured data. Important

biological insight can be gained from evaluating the random-

effect variances even if they are not the prime interest of the

study.
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