
Probability Distributions & What
they can Do for You!

Roadmap

So far, we’ve been slinging around normal distribution terminology
casually. Let’s formalize it, and make it useful for hypothesis
testing!

1. Basic Probability Review
2. Other distributions: The world ain’t Normal!
3. Our first mode of inference: P-Values



Probability!

Probability - The fraction of
observations of an event given
multiple repeated independent
observations.



A Feeding Trial Example

Let’s say you’ve offered
50 budworms a leaf to eat.
45 eat. P (eats) = 45

50 = 0.9

Now you offer
50 others a treated leaf.
10 eat. P (eats) = 10

50 = 0.2

Probability of NOT doing something

What is the
probability of not eating if
you are fed a treated leaf?

P(! eats) = 1− 10
50 = 0.8

P(!A) = 1-P(A)



Probability of Exclusive Events

What if we offered
our budworms both a
treated and untreated leaf?
20 eat the control,
5 eat the treated leaf.

P(eats) = 20
50 + 5

50 = 0.5

P(A or B) = P(A) + P(B)

Two Events

We offer our budworms a leaf.
45 eat it. Then we offern them
seconds. 20 of the original
45 each the second leaf.

P(eats twice) = 20
50 = 0.4

= 45
50 ∗

20
45

P(A and B) = P(A)P(B)



Two Conditional Events

If we are interested in
the probability of eating twice
- i.e. the probability of eating
a second time given that a
budworm ate once, we phrase
that somewhat differently.

P (eats2|eats1)

So, P(A given B) = P (A|B)
And thus, P(A and B) = P (A)P (B|A)

Distributions!

(when a point probabilty just ain’t enough)



Frequency Distributions Make Intuitive Sense
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Frequencies Can be Turned Into Probabilities
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Just divide by total # of observations
But - we have binned observations...



Frequencies of Individual Observations
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Can we turn these into probabilities?

Probabilities of Individual Measurements
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Many probabilities small, and what about the gaps?



Continuous Probability Distributions
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Any individual observation has a probability density.

Probability of a Range of Values
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P(a=100) or P(a=101) or P(a=102)... = P(a=100) + P(a=101) + P(a=102)∫ 200
i=100 P (a = i)



Probability as Integral Under the Curve
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We obtain probabilities of observations between a range of values
by integrating the distribution over selected values.

The Normal Distribution
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I Defined by it’s mean
and standard
deviation.

I Y ~N(µ, σ)
I Single mode
I Symmetric



67% of Values within 1 SD
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95% of Values within 2 (1.96) SD
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How to Get A Probability Density in R
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dnorm(Y, mean = 0, sd = 1)

The Probability of a Value or More Extreme Value
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pnorm(Y, mean = 0, sd = 1)



The Cummulative Distribution/Quantile Function
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The Cummulative Distribution/Quantile Function

pnorm an qnorm are the inverse of one another

pnorm(-1)

# [1] 0.1587

qnorm(pnorm(-1))

# [1] -1

qnorm(0.025)

# [1] -1.96



The Lognormal Distribution
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I An exponentiated normal
I Defined by the mean and

standard deviation of its log.
I Y ˜LN(µlog, σlog)
I Generated by multiplicative

processes

dlnorm(Y,
meanlog=0,
sdlog=1)

The Gamma Distribution
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I Defined by number of
events(shape) average time
to an event (scale)

I Can also use rate (1/scale)
I Y ˜G(shape, scale)
I Think of time spent waiting

for a bus to arrive

dgamma(Y, shape = 2, scale = 2)



Waiting for more events

Shape = 2, scale = 2

Shape = 5, scale = 2
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Longer average time per event

Shape = 2, scale = 2

Shape = 2, scale = 3
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The Poisson Distribution
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I Y ˜ P(lambda)

dpois(Y, lambda = 5)

When Lambda is Large, Approximately Normal
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The Binomial Distribution
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I Results from multiple
coin flips

I Defined by size (# of
flips) and prob
(probability of heads)

I Y ˜ B(size, prob)
I bounded by 0 and size

dpois(Y, size, prob)

Increasing Probability Shifts Distribution
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The Negative Binomial Distribution
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I Distribution of

number of failures
before n number of
successes in k trials

I Or mean # of counts,
µ, with an
overdispersion
parameter, size

I Y ˜ NB(µ, size)

dnbinom(Y, mu, size)

Exercise

I Explore the distributions we have discussed
I Examine how changing parameters shifts the output of

probability function
I Compare curves generated using density functions (e.g.,

dnorm) and large number of random draws (e.g. from rnorm)
I Overlay these in plots if you can (hist, lines, etc.)
I Challenge: graphically show integration under the different

types of distribution curves (?polygon or ?geom ribbon)



Hypothesis Testing

How Do we Derive Truth from Data?

Frequentist Inference: Correct conclusion drawn from repeated
experiments

Bayesian Inference: Probability of belief that is constantly
updated



Modes of Frequentist Inference

Null Hypothesis Tests: Falsify a null hypothesis
Likelihood/Information Theoretic: Evaluate weight of evidence

Inductive v. Deductive Reasoning

Deductive Inference: A larger theory is used to devise many
small tests. NHT.

Inductive Inference: Small pieces of evidence are used to shape a
larger theory. Likelihood.



Null Hypothesis Tests & Popper

Falsification of hypotheses is key!

A theory should be considered
scientific if, and only if, it is
falsifiable.

Deductive Reasoning and Null Hypothesis Tests

A null hypothesis is a default condition that we can
attempt to falsify.



Common Uses of Null Hypothesis Tests

I Ho: Two groups are the same
I Ho: An estimated parameter is not different

from 0
I Ho: The slopes of two lines are the same
I Etc...

So, what conclusions can we draw if we reject the
null?

Ho and Ha
There are often many alternate hypotheses. Rejection of the null
does not imply acceptance of any single alternative hypothesis.
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Null Distributions

Null hypotheses are associated with null statistical distributions.

For example, if Ho states that a value is normally distributed, but
is not different from 0, the null distribtion is centered on 0 with
some standard deviation.

Null Distributions
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The P Value

P-value: The Probability
of making an observation
or more extreme
observation given that the
null hypothesis is true.

R. A. Fisher

Evaluation of a Test Statistic

We can use our data to calculate a test statistic that maps to a
value of the null distribution. We can then calculate the probability
of observing our data, or of observing data even more extreme,
given that the null hypothesis is true.

P (X ≤ Data|H0)



Evaluation of a Test Statistic

0.0

0.1

0.2

0.3

0.4

−2 0 2
Y

P
ro

ab
ili

ty
 D

en
si

ty

The P Value
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p=0.0227, Note - this is a one-tailed test!



1-Tailed v. 2-Tailed Tests

1-Tailed Test: We are explicit about whether Ha implies that our
sample is greater than or less than our null value.

P (X ≤ Data|H0) (1-tailed)

2-Tailed Test: We are make no assumption about the sign or
direction of our alternative hypotheses.

P (X ≤ Data|H0) + P (X ≥ Data|H0) (2-tailed)

Two-Tailed P Value
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p=0.0454 from pnorm(-2)*2



When should you use a 1-Tailed Test?

What does 0.454 mean?

There is a 4.54% chance of obtaining the observed data, or more
extreme data, given that the null hypothesis is true.

If you chose to reject the null, you have a 1 in 22 chance of being
wrong.
How comfortable are you with rejecting the null?

Note: rejecting the null 6= accepting a specific alternative



Exercise: Evaluate Support for Null Hypothesis

I Typically, the number of warts on a toad is Poisson distributed
with a λ of 54

I You survey a lake suspected to contain high PAH levels. You
pick up a toad, and it has 40 warts.

I What is your null hypothesis?
I What is the probability of making this observation, given your

null?
I Challenge: How does your p value change with # of warts,

say, from 1 to 108 warts?

Exercise: Evaluate Support for Null Hypothesis

2*ppois(40, 54)

# [1] 0.05755

#OR!
p<-0
for(i in 1:40){

p<-p+dpois(i, 54)
}
p*2

# [1] 0.05755



Exercise: Evaluate Support for Null Hypothesis
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Exercise: Evaluate Support for Null Hypothesis

p<-0
for(i in 0:54){

p[i+1]<-2*ppois(i, 54)
}

for(i in 55:108){
p[i+1]<-2*ppois(i, 54, lower.tail=F)

}

plot(0:108, p)


